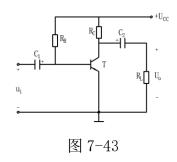
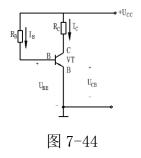
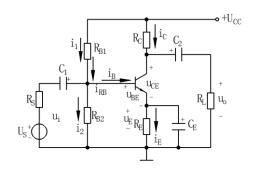

课程作业


- 1. 放大电路的静态工作点是通过分析什么通路计算的?静态工作点是要求出哪几个主要参数值?如果放大电路的静态工作点设置不合适,可能会引起什么电路现象?
- 2. 测得工作在放大状态的三极管的 I_e =5mA I_b =0.2mA,求 I_c 并估算三极管电流放大倍数 β 。
- 3. 在晶体管放大电路中,测得 I_c =2mA, I_e =2.02mA,求 I_b 和三极管电流放大倍数 β 各为多少。
- 4. 电路如图 7-41 所示,设 U_{cc} =12V, R_{b1} =27k Ω , R_c =2k Ω , R_e =1k Ω , U_{BE} =0. 7V,现要求 I_{co} =3mA,则 R_{b2} 为多少?


5. 电路如图 7-42 所示,已知 U_{CC} =12V, R_b =510k Ω , R_c =8k Ω , U_{BE} =0.7V, $U_{CE}(sat)$ =0.3V,当 β =50 时,静态工作点的值为多少?


6. 晶体管放大电路如题图 7-43 所示。已知 U_{CC} =12V, R_{C} =3k Ω , R_{B} =240k Ω ,晶体管的 β =40。(1)试用直流通路估算各静态值 I_{B} , I_{C} , U_{CE} ;(2)在静态时(ui=0) C_{1} 和 C_{2} 上的电压各为多少?并标出极性。

7. 利用微变等效电路计算图 7-44 所示电路的电压放大倍数 A_u 。(1)输出开路; (2) R_L =6k Ω 。设 r_{be} =0.8k Ω 。

8. 如图 7-45 所示的分压式偏置放大电路中,已知 U_{cc} =24V, R_c =3.3k Ω , R_E =1.5k Ω , R_{B1} =33k Ω , R_{B2} =10k Ω , R_L =5.1k Ω ,晶体管的 β =66,并设 R_S ≈0。 (1) 试求静态值 I_B , I_C 和 U_{CE} ; (2) 画出微变等效电路; (3) 计算晶体管的输入电阻 r_{be} ; (4) 计算电压放大倍数 A_u ; (5) 计算放大电路输出端开路时的电压放大倍数,并说明负载电阻 R_L 对电压放大倍数的影响; (6) 估算放大电路的输入电阻和输出电阻。

题图 7-45